MSc C.K. Yang
PhD student
Electronic Instrumentation (EI), Department of Microelectronics
Electronic Instrumentation (EI), Department of Microelectronics
PhD thesis (May 2012): From MEMS to NEMS: Scaling Cantilever Sensors
Promotor: Paddy French
Publications
- A Level Shifter With Almost Full Immunity to Positive dv/dt for Buck Converters
Yang, Y.; Huang, M.; Du, S.; Martins, R. P.; Lu, Y.;
IEEE Transactions on Circuits and Systems I: Regular Papers,
Volume 70, Issue 11, pp. 4595-4604, 2023. DOI: 10.1109/TCSI.2023.3307869 - A Crystal-Less Clock Generation Technique for Battery-Free Wireless Systems
Chang, Z.; Zhang, Y.; Yang, C.; Luo, Y.; Du, S.; Chen, Y.; Zhao, B.;
IEEE Transactions on Circuits and Systems I: Regular Papers,
pp. 1-12, 2022. DOI: 10.1109/TCSI.2022.3201196 - A Precision Capacitance-to-Digital Converter with 16.7-bit ENOB and 7.5 ppm/°C Thermal Drift
R. Yang; M. A. P. Pertijs; S. Nihtianov;
IEEE Journal of Solid-State Circuits,
Volume 52, Issue 11, pp. 3018-3031, November 2017. DOI: 10.1109/jssc.2017.2734900
Abstract: ...
This paper presents a high-precision capacitance-to-digital converter (CDC) for displacement measurement in advanced industrial applications, based on a charge-balancing third-order delta–sigma modulator. To achieve high precision, this CDC employs a precision external resistive reference and a quartz-oscillator-based time reference instead of a reference capacitor. To minimize the error contribution of the CDC circuitry, various precision circuit techniques, such as chopping and auto-zeroing, are applied at both system and circuit level. Measurement results of the prototype realized in 0.35-μm CMOS technology show that the CDC achieves an rms resolution of 42 aF across a capacitance range from 6 to 22 pF, corresponding to an effective number of bits (ENOB) of 16.7 bit. The conversion time for one measurement is 10.5 ms, during which the CDC consumes 230 μA from a 3.3-V single supply. The measured thermal stability is within ±7.5 ppm/°C across a temperature range from 20 °C to 70 °C, which represents a significant improvement compared to the state of the art. After a two-point calibration, all ten measured samples from one batch show absolute accuracy below ±25 fF across the entire capacitance measurement range. - Error analysis of a charge-balancing capacitive sensor interface with resistive reference
R. Yang; S. Nihtianov;
In O Kaynak (Ed.), Proc. of the 23rd IEEE International Symposium on Industrial Electronics,
IEEE, pp. 274-280, 2014. Harvest. - Noise analysis and characterization of a charge-balancing-based capacitive sensor interface with a resistive reference
R. Yang; S. Nihtianov;
In JC Miguez; D Slomovitz (Ed.), Proc. of the IEEE International Instrumentation and Measurement Technology Conference,
IEEE, pp. 1182-1186, 2014. Harvest. - Capacitive sensor interface with precision references
R. Yang; M. A. P. Pertijs; S. Nihtianov; P. Haak;
In Proc. IEEE International Conference on Industrial Technology (ICIT),
IEEE, pp. 358‒390, March 2014. DOI: 10.1109/icit.2014.6894896 - A time/resistor-referenced capacitive sensor interface for displacement measurement in the sub-nanometer range
R. Yang; S. Nihtianov;
In RC Luo (Ed.), Proc. of the 22nd IEEE International Symposium on Industrial Electronics,
IEEE, pp. 1-5, 2013. Harvest. - Autonomous self-aligning and self-calibrating capacitive sensor system
O.S. van de Ven; D. Yang; S. Xia; J.P. van Schieveen; J.W. Spronck; R.H. Munnig Schmidt; S. Nihtianov;
In M Kamel; F Karray; H Hagras (Ed.), Proc. of the 3rd International Conference on Autonomous and Intelligent Systems,
Springer Verlag, pp. 10-17, 2012. - From MEMS to NEMS: Scaling Cantilever Sensors
C.K. Yang;
PhD thesis, Delft University of Technology, 2012. - Performance optimization of self-alignment system for capacitive sensors
J. van Schieveen; R. Yang; S. Nihtianov; J. Spronck;
In S Bogosyan; K Ohnishi (Ed.), Proc. of the IEEE International Conference on Mechatronics,
IEEE, pp. 648-653, 2011. - High-performance eddy current sensor interface for small displacement measurement
M.R. Nabavi; R. Yang; S. Nihtianov;
In {Dyer et al.}, C (Ed.), Proc. of the International Instrumentation and Measurement Technology Conference,
IEEE, pp. 58-62, 2011. - Highly stable capacitance-to-digital converter with improved dynamic range
R. Nojdelov; R. Yang; X. Guo; S. Nihtianov;
In S Mukhopadhyay; A Fuchs; KP Jayasundera (Ed.), Proc. of the IEEE Fifth International Conference on Sensing Technology,
IEEE, pp. 140-144, 2011. - Qualification of a stable capacitive sensor interface, based on capacitance-resistance comparison
R. Yang; A. Fekri; R. Nojdelov; S. Nihtianov;
In E Lewis; T Kenny (Ed.), Proc. of the IEEE Sensors conference,
IEEE, pp. 1181-1184, 2011. - Demonstration of PECVD SiC-SiO2-SiC horizontal slot waveguides
G. Pandraud; A.B. Neira; E. Margallo Balbas; C.K. Yang; P.M. Sarro;
IEEE Photonics Technology Letters,
Volume 22, Issue 6, pp. 398-400, 2010. - Optimized low-power thermal stepper system for harsh and inaccessible environments
R. Yang; J.P. van Schieveen; S. Nihtianov; J.W. Spronck;
In s.n. (Ed.), Proceedings IECON 2010,
IEEE, pp. 1779-1784, 2010. - Electronic system for control of a thermally actuated alignment device
R. Yang; J.P. van Schieveen; S. Nihtianov; J.W. Spronck;
In {Rodríguez et al}, J (Ed.), Proceedings ICIT 2010,
IEEE, pp. 1581-1586, 2010. - Method for determining a spring constant for a deformable scanning probe microscope element, and scanning probe microscope and calibration device arranged for determing a spring constant for a probe element
H. Sadeghian Marnani; C. Yang; F. van Keulen; J.F.L. Goosen; A. Bossche;
2010. - Method for measuring a temperature, electromechanical device for measuring a temperature
H. Sadeghian Marnani; F. van Keulen; C.K. Yang; J.F.L. Goosen; A. Bossche;
2009. Op naam van TU Delft; 2003431; Op naam van TU Delft. - Electronic control of a thermal actuator for a fully autonomous self-alignment and self-caliration functionality
C.K. Yang;
PhD thesis, Delft University of Technology, 2009. - Tribler: a social-based peer-to-peer system
J.A. Pouwelse; P.J. Garbacki; J. Wang; A. Bakker; J. Yang; A. Iosup; D.H.J. Epema; M.J.T. Reinders; {van Steen}, MR; HJ Sips;
Concurrency and Computation: Practice & Experience,
Volume 20, Issue 2, pp. 127-138, 2008. - Thin-film encapsulation of a silicon field emission electron source
F. Santagata; C.K. Yang; J.F. Creemer; P.M. Sarro;
In s.n. (Ed.), Proceedings Eurosensors XXII,
Eurosensors XXII, pp. 625-628, 2008. - Processing of inertial sensors using SF6-O2 Cryogenic plasma process
G. Craciun; H. Yang; L. Pakula; M.A. Blauw;
In s.n. (Ed.), SAFE 2003 Semiconductor advances for future electronics,
Stichting voor de Technische Wetenschappen, pp. 683-686, 2003. CD-ROM. - Remote sensing and petroleum leakage: a review and case study
F.D. van der Meer; P. Dijk; H. van der Werff; H. Yang;
Terra Nova: the European journal of geosciences,
Volume 24, Issue 1, pp. 1-17, 2002. - Imaging spectrometry and petroleum geology
F.D. van der Meer; H. Yang; S.B. Kroonenberg; H. Lang; P. Dijk; K.H. Scholte; H. van der Werff;
F.D. van der Meer; {de Jong}, S (Ed.);
Kluwer Academic Publishers, , pp. 219-232, 2002. Nog niet eerder opgevoerd. - Modified Reynolds' equation for squeeze-film air damping of hole-plates
M. Bao; H. Yang; Y. Sun;
In Eurosensors 2002,
Czech Technical University, pp. 43-44, 2002. - Imaging spectrometry and petroleum geology
F.D. van der Meer; H. Yang; S.B. Kroonenberg; H. Lang; P. Dijk; K.H. Scholte; H. van der Werff;
{van der Meer}, F; {de Jong}, S (Ed.);
Kluwer Academic Publishers, , pp. 219-238, 2000. - Final Technical Report of project BE-1167 MULTISTRESS (period 1-1-96 to 31-12-98) Improving multilayered metallic materials by controlling stress, strain and interface quality and new equipment for determing these characteristics.
O. Thomas; B. Chenevier; E.J. Mittemeijer; J.E. Sundgren; D. de Boer; A. Charaï; L. Roux; P. Gergaud; A Böttger; H. Yang; F Torregrossa; A Leenaers; P Sandstrom;
TU Delft, , 1999.
BibTeX support
Last updated: 15 Jun 2019
Chung-Kai Yang
Alumnus- Left in 2012